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Abstract. We compared the response of ground beetles (Coleoptera: Carabidae) to the creation of

canopy gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a bottomland

hardwood forest (South Carolina, USA). Samples were collected four times in 2001 by malaise and

pitfall traps placed at the center and edge of each gap, and 50 m into the surrounding forest.

Species richness was higher at the center of young gaps than in old gaps or in the forest, but there

was no statistical difference in species richness between old gaps and the forests surrounding them.

Carabid abundance followed the same trend, but only with the exclusion of Semiardistomis viridis

(Say), a very abundant species that differed in its response to gap age compared to most other

species. The carabid assemblage at the gap edge was very similar to that of the forest, and there

appeared to be no distinct edge community. Species known to occur in open or disturbed habitats

were more abundant at the center of young gaps than at any other location. Generalist species were

relatively unaffected by the disturbance, but one species (Dicaelus dilatatus Say) was significantly

less abundant at the centers of young gaps. Forest inhabiting species were less abundant at the

centers of old gaps than in the forest, but not in the centers of young gaps. Comparison of

community similarity at various trapping locations showed that communities at the centers of old

and young gaps had the lowest similarity (46.5%). The community similarity between young gap

centers and nearby forest (49.1%) and old gap centers and nearby forest (50.0%) was similarly low.

These results show that while the abundance and richness of carabids in old gaps was similar to that

of the surrounding forest, the species composition between the two sites differed greatly.

Introduction

Southeastern bottomland hardwood forests are important for water quality
and control, nutrient cycling, wildlife habitat, and they support among the
most diverse plant and animal communities in North America (Kellison and
Young 1997). To protect this unique ecosystem, and to satisfy increasing de-
mand for forest products, the remaining stands must be maintained and
managed properly. According to Guldin (1996), proper forest management
attempts to imitate natural rates of succession and disturbance in order to
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minimize the environmental impacts of timber removal. One promising method
for use in bottomland hardwood forests is group selection cutting, an uneven
age forest management practice that emulates small-scale natural disturbances
(i.e. tree falls, insect outbreaks, wind damage, etc.) to create small openings
throughout the forest (Hunter 1990; Guldin 1996; Meadows and Stanturf
1997).

Ground beetles (Carabidae) are taxonomically well known, easily and
inexpensively surveyed, and respond quickly to environmental change (Rainio
and Niemelä 2003). These attributes have made them useful bioindicators in
numerous studies involving disturbance (Allegro and Sciaky 2003; Rainio and
Niemelä 2003).

While the response of ground beetles to clearcuts in the conifer forests of
Europe and northeastern North America has been well studied Niemelä et
al. 1993; Altegrim et al. 1997; Beaudry et al. 1997; Niemelä 1997; Duchesne
et al. 1999; Heliola et al. 2001; Koivula 2002a; Koivula et al. 2002; Magura
et al. 2003; Pearce et al. 2003), little work has been done on alternative
harvesting methods (Altegrim et al. 1997; Werner and Raffa 2000; Koivula
2002b; Koivula and Niemelä 2003; Vance and Nol 2003; Moore et al. 2004),
or in hardwood forests (Lenski 1982a; Warriner et al. 2002; Vance and Nol
2003; Moore et al. 2004).

Here we report the results of the first study to examine the response of
carabids to group selection cutting in a bottomland hardwood forest in the
southeastern United States. We compare the abundance and species richness of
carabids in canopy gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 or
7 years) to those at gap edge and in the surrounding forest.

Materials and methods

Study site

This study was conducted fromMay to November 2001 on the Savannah River
Site (SRS), an 80,269-ha nuclear production facility near Aiken, South
Carolina. The SRS is owned and operated by the United States Department of
Energy (DOE) as a National Environmental Research Park. Our study site was
an approximately 120-ha stand of 75–100 year-old bottomland hardwoods.
Common forest trees included numerous oak species (Quercus spp.), bald
cypress (Taxodium distichum (L.) Richard), sweetgum (Liquidambar styraciflua
L.), red maple (Acer rubrum L.), and loblolly pine (Pinus taeda L.). The mid-
story consisted predominantly of red mulberry (Morus rubra L.), ironwood
(Carpinus caroliniana Walter) and American holly (Ilex opaca Aiton). The
understory was dominated by dwarf palmetto (Sabal minor (Jacquin) Persoon)
and switchcane (Arundinaria gigantean (Walter) Muhl.). Pre-harvest basal area
of the stands was 33 m2/ha (Pauley et al. 1996). The study site often experiences
seasonal flooding (January–April) with some low-lying areas remaining under
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water much of the year. Total rainfall in 2001 was 104 cm with the wettest
month being June (23.4 cm) and the driest being December (1.2 cm).

Gaps

Of the 24 gaps used in this study, 12 were created in December 1994 (‘old
gaps’) and 12 in August 2000 (‘young gaps’). There were four replicates of
three different sizes (0.13, 0.26, and 0.50 ha) for each gap age. The gap area
was defined as the area surrounded by the boles of the peripheral dominant
forest trees. The gaps were located throughout the 120 ha bottomland
hardwood forest, and were spaced at least 200 m apart. Vegetation in old
gaps was 1–8 m in height and consisted of pioneer species such as sweetgum,
sycamore (Platanus occidentalis L.), green ash (Fraxinus pennsylvanica Mar-
shall), black willow (Salix nigra Marshall), tulip poplar (Liriodendron
tulipifera L.), oaks, switchcane, and dwarf palmetto. Young gaps contained
small stump sprouts or seedling of these species as well as fireweed (Erechtites
hieracifolia (L.) Raf.), blackberries (Rubus spp.), and plumegrass (Erianthus
giganteus (Walter) Muhl.), other native grasses, and various sedge species
(Cyperus spp.).

Beetle sampling and identification

Ground beetles were sampled at the center and edge of each gap and in the
surrounding forest 50 m from gap edges during four 7-day trapping periods
(17–23 May, 10–16 July, 7–13 September, and 3–9 November). Each sample
location had a malaise and two pitfall traps to capture flying and crawling
beetles, respectively. Malaise traps (‘Canopy Traps’, Sante Traps, Lexington,
KY) differed from the traditional design in that they contained collecting jars
at the top and bottom so insects that fall when encountering a barrier were also
collected. The traps were suspended from 3 m tall metal hangers.

Pitfall traps consisted of a 480 ml plastic cup buried to ground level. A small
funnel (8.4 cm diameter) inserted into the cup directed captured beetles into a
smaller 120 ml specimen cup below. The pitfall was positioned at the inter-
section of four 0.5 m long drift fences. Two pitfall traps were placed 5 m apart
at each sample station, and the samples from each were combined for each
location (center, edge, and forest). The collecting jars for both pitfall and
malaise traps were filled with NaCl–2% formaldehyde solution to preserve
specimens and a drop of detergent to reduce surface tension (New and Hanula
1998). Once collected, beetles were brought back to the lab and immediately
stored in 70% alcohol. Specimens were sorted to morphospecies and later
identified using a reference collection and a key to South Carolina Carabidae
(Ciegler 2000). In the interest of accuracy, we were unable to assign species-
level names to several morphospecies.
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We assigned the most abundant species to categories (open-habitat species
(fields, meadows, and disturbed areas), generalist species (open or forested
areas), and forest species (forested areas)) based on known habitat data
(Larochelle and Lariviere 2003). Not all species were classified into these cat-
egories due to inadequate information or to the genus-level identification of
several morphospecies (Table 1).

Statistical analysis

We combined malaise and pitfall trap captures at each location before
analyzing the results. A 3-way analysis of variance with gap age, trap
location, and gap size as the main effects showed a significant interaction
between gap age and trap location so we analyzed the data for each gap age
separately. The General Linear Model procedure of SAS (SAS Institute
1985) was used for all analyses and the Ryan–Einot–Gabriel–Welsch Mul-
tiple Range Test was used to determine differences (a < 0.05 unless other-
wise stated) in relative abundance of insects between trap locations or gap
sizes for each gap age (Day and Quinn 1989). We used Raabe’s percent
similarity (Southwood 1966) to compare similarity among trap locations and
trap types.

Results

In total, 5498 ground beetles were collected representing 26 tribes, 60 genera,
and 87 species. Species richness was higher at the center of young gaps than in
old gaps or in the forest, but there was no statistical difference in species
richness between old gaps and the forests surrounding them (Figure 1).
Carabid abundance followed the same trend (Figure 2), but only with the
exclusion of Semiardistomis viridis (Say), a very abundant species (23% of the
total number) that differed in its response to gap age compared to most other
species (Table 1). There was no statistical difference in abundance or species
richness among gaps of differing size (Figure 3).

We were able to classify 19 of the 31 most abundant (>25 individuals)
species as open-habitat species, generalists, or forest dwellers (Table 1). In
general, carabids associated with open-habitat responded positively to canopy
gap creation, and were more abundant at the centers of young gaps than at
other young or old gap locations (center, edge, or forest) (Figure 4). The
number of open-habitat species at the centers of old gaps was comparable to
that of the surrounding forest. Likewise, the abundance of generalist carabids
was similar among both young and old gap locations (Figure 4). Carabids that
prefer forest habitats were less abundant at the centers of young and old gaps
than in their respective forest locations, but this was only significant (p < 0.1)
for old gaps (Figure 4).
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Of the 31 most abundant species, ten species exhibited a significant difference
among young gap locations and five differed significantly among old gap
locations (Table 1). Eight of the ten species that differed among young gap
locations were more abundant in the centers of young gaps than in the sur-
rounding forest. Conversely, only two (Acupalpus sp. 2 and S. viridis) were
more abundant at the center of old gaps than in the surrounding forest

Figure 2. Mean (±SE) number of carabids collected in malaise and pitfall traps in a bottomland

hardwood forest, South Carolina, USA in 2001. The traps were placed at the center, edge, and in

the forest surrounding ‘young’ (created in 2000) and ‘old’ (created in 1994) canopy gaps. (b) depicts

total beetle abundances excluding Semiardistomis viridis. Within graphs (for each gap age), bars

with the same letter above them are not significantly different (Ryan–Einot–Gabriel–Welsch

Multiple Range Test, p < 0.05). Asterisks denote significant differences (p < 0.05) between the

same trap locations (e.g. center vs. center) in old and young gaps.

Figure 1. Mean (±SE) richness of carabids collected in malaise and pitfall traps in a bottomland

hardwood forest, South Carolina, USA in 2001. The traps were placed at the center, edge, and in

the forest surrounding ‘young’ (created in 2000) and ‘old’ (created in 1994) canopy gaps. Within

graphs (for each gap age), bars with the same letter above them are not significantly different

(Ryan–Einot–Gabriel–Welsch Multiple Range Test, p < 0.05). Asterisks denote significant dif-

ferences (p < 0.05) between the same trap locations (e.g. center vs. center) in old and young gaps.
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(Table 1). While Acupalpus sp. 2 was more abundant at the centers of both
young and old gaps, S. viridis was much more numerous in old gap centers
than at the edge or in the forest. It was also significantly more abundant in old
gap centers than in young gap centers. Several abundant species appeared to
respond positively to recent disturbance, but only Notiobia terminata (Say) was
found exclusively in young gaps (Table 1).

The most similar carabid assemblages were those at the edges of gaps and the
forests surrounding them (Table 2). The edges of old and young gaps also had
a high degree of similarity (72%). The least similar carabid communities were
those at the centers of young and old gaps (Table 2), but carabid assemblages
in gap centers and surrounding forests also had relatively low similarity.

Discussion

Many studies have shown an overall increase in the species richness and/or
abundance of carabids following disturbance (Eryschov and Trophimova 1984;
Niemelä et al. 1993, 1994; Thompson and Allen 1993; Beaudry et al. 1997;
Heliola et al. 2001; Warriner et al. 2002; Koivula et al. 2002). While some
studies have found no overall change in carabid abundance or species richness,
they have identified significant affects at the species level (Atlegrim et al. 1997)
as well as differences in species composition between disturbed and undisturbed
sites (Greenburg and Thomas 1995; Butterfield 1997; Werner and Raffa 2000).

Figure 3. Mean (±SE) abundance (a) and richness (b) of carabids collected in malaise and pitfall

traps in 2001 in bottomland hardwood forest gaps of different size (0.13, 0.26, and 0.50 ha) created

in 1994 and 2000 in South Carolina, USA. Within graphs (for each gap age), bars with the same

letter above them are not significantly different (Ryan–Einot–Gabriel–Welsch Multiple Range Test,

p < 0.05). Asterisks denote significant differences (p < 0.05) between the same trap locations

(e.g. center vs. center) in old and young gaps.
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Table 2. Raabe’s percent similarity of carabids in new (1 year) vs. old (7 years) canopy gaps by

location (center, edge, or 50 m into surrounding forest) in a South Carolina bottomland hardwood

forest, 2001.

Comparison Percent similarity

New Edge vs. New Forest 76.21

Old Edge vs. Old Forest 75.30

New Edge vs. Old Edge 72.33

New Forest vs. Old Forest 67.66

New Center vs. New Edge 60.64

Old Center vs. Old Edge 58.47

Old Center vs. Old Forest 50.01

New Center vs. New Forest 49.11

New Center vs. Old Center 46.49

Figure 4. Mean (±SE) number of carabids collected in malaise and pitfall traps in a bottomland

hardwood forest, South Carolina, USA in 2001. The traps were placed at the center, edge, and in

the forest surrounding ‘young’ (created in 2000) and ‘old’ (created in 1994) canopy gaps. The

species (Table 2) were categorized as preferring open-habitat (a), being generalists (b), or preferring

intact forests (c) based on information in Larochelle and Lariviere (2003). Within graphs (for each

gap age), bars with the same letter above them are not significantly different (Ryan–Einot–Gabriel–

Welsch Multiple Range Test, p < 0.05). Asterisks denote significant differences (p < 0.05)

between the same trap locations (e.g. center vs. center) in old and young gaps.
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As might be expected, habitat specificity appears to determine the response of
many carabids. The abundance of open-habitat species, for example, has been
shown to increase in disturbed areas, while the numbers of forest-dwelling
species often decreases or disappears following disturbance (Niemelä et al.
1993).

Our results are generally consistent with these trends, but there appears to be
substantial differences in the abundance, species richness, and community
composition of carabids with time after disturbance. For example, the carabid
abundance, richness, and species composition differed greatly between the cen-
ters of young and old gaps. Furthermore, while species composition differed
greatly between both young and old gaps centers and their respective forest
locations, differences between the abundance and species richness of carabids at
the centers of gaps and the forests surrounding them was significant only for
young gaps. Open-habitat species were more abundant at the centers of young
gaps than in the surrounding forest, but there was no difference in abundance
between the centers of old gaps and the forests surrounding them. Conversely,
forest species were less abundant at the centers of gaps than in the forest, but only
for old gaps was this difference significant. Thus, the carabid communities
present at the centers of old gaps differed greatly from those found at the centers
of young gaps as well as from those in the forests surrounding old gaps.

Past studies have also noted changes in carabid communities with time after
disturbance. For example, in a study involving single-tree selection cutting,
Vance and Nol (2003) found reduced activity densities in recently (0.5–3 years)
cut stands compared to reference stands, while the activity densities for certain
species was higher in older (15–20 years) cut stands. The authors attribute these
differences to significant reductions in leaf litter in the recently cut stands, and to
differences in the vegetation in older stands. The importance of factors such as
vegetation structure, temperature, humidity, light intensity, and soil moisture to
ground beetles is well supported by past research (Lenski 1982a; Cardenas and
Bach 1989; Thompson and Allen 1993; Magura et al. 1997; Antvogel and Bonn
2001; Warriner et al. 2002).

Reduced competitive exclusion may have played a role in the higher abun-
dance and species richness of carabids observed in young gaps (Allen and
Thompson 1977; Lenski 1982a, b), butwe suspect that it had relatively little effect
in this study. The increase in habitat heterogeneity following disturbance was
probably much more important. For example, timber removal created large
amounts of coarse woody debris and greatly increased the complexity of the gap
floor. While young gaps contained an abundance of CWD, little remained in the
old gaps. Differences in vegetation between young and old gaps were similarly
dramatic. In contrast to young gaps in which there were scattered clumps of
grasses, tree sprouts, and herbaceous growth, old gaps were covered in a dense
growth of young trees competing for sunlight. Because young and old gaps were
so different in habitat structure, it is not surprising that carabid abundance,
species richness, and composition differed greatly between the two locations.
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Because the carabid communities at the edges of young and old gaps were so
similar to those in the surrounding forest, we have little indication of a distinct
edge community. Although researchers in Hungary reported unique edge com-
munities as well as several species unique to edge habitats (Magura and Toth-
meresz 1997;Magura et al. 2001;Magura 2002), the results fromother studies are
similar to our own (Spence et al. 1996; Heliola et al. 2001; Kotze and Samways
2001).

The carabid community in seven-year old gaps is far from recovered, despite
comparable abundance and species richness between old gaps and the sur-
rounding forest. This is indicated by the low degree of similarity between the two
sites. In fact, carabids at the centers of old gaps are only slightly more similar to
those in the forest than are the carabids at young gap centers (50.0 and 49.1%
similar, respectively). These results emphasize the fact that abundance should not
be used alone (Moore et al. 2004) to determine the recovery time of carabid
assemblages.

AlthoughVance andNol (2003) found an increase in both open-habitat species
and forest generalists 0.5–3 and 15–20 years after single-tree selection harvests,
we could identify no common trend among carabids between young and old
canopy gaps. The response of carabids to young and old gaps differed greatly,
even among species with similar habitat preferences. For example, of the six
common open-habitat species in this study, three were significantly more abun-
dant at young gap centers than at the edges or in the forest surrounding young
gaps, but there were no differences among old gap locations. Furthermore, of the
31 most abundant morphospecies collected, 13 exhibited a significant difference
among either young or old gap locations. Of these, only five differed significantly
among old gap locations and just two responded similarly to young and old gaps.

These differences in abundance between young and old gaps are probably due
to the specific habitat requirements of each species. Given this, it is interesting to
note that just two species (S. viridis and an Acupalpus species) were more abun-
dant at the centers of old gaps than in the nearby forest. While the Acupalpus
species was more abundant at the center of young gaps than old gaps, S. viridis
was more abundant at the centers of old gaps than at any other young or old gap
location. This result further emphasizes the importance of time considerations
when studying the effects of disturbance on ground beetles, as well as the species-
specific response of carabids to disturbance.

While many species tend to be more abundant in disturbed habitats, several
have been shown to exist there exclusively (Niemelä et al. 1993; Thompson and
Allen 1993; Beaudry et al. 1997;Warriner et al. 2002). For example, in this study,
N. terminata was collected only in the center or at the edge of young gaps.
Similarly, a number of forest species were found in much greater numbers in the
forest than elsewhere.While we found no substantial evidence for the presence of
strict forest specialists, such speciesmay have been collected in low numbers (and
could not be analyzed statistically) or not at all. Since total carabid abundance in
the forest near young gapswas different from that near old gaps, gap creation had
a definite effect on the carabid community at least 50 m into the surrounding
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forest. Because of this, obligate forest species, if present, may have found the
forests surrounding the gaps to be unsuitable. Although many carabids will
eventually recolonize an area after disturbance (Koivula et al. 2002) some forest
specialists are unable to reestablish populations in regenerating clear-cut stands
(Beaudry et al. 1997) and old growth species with poor dispersal ability may face
local extinction if stands of mature forest are not preserved (Halme andNiemelä
1993; Spence et al. 1996; Beaudry et al. 1997; Heliola et al. 2001; Koivula et al.
2002). Because group selection harvesting disturbs smaller patches of bottom-
land hardwood forest at any one time and is more similar to natural levels of
disturbance, it may lessen the detrimental effects of disturbance on these sensitive
forest species.

How group selection cutting compares to other forestry practices, remains
unclear. Recent work in Finland has found small (0.16 ha) openings to be less
disruptive of community structure than larger clear-cut stands (Koivula 2002b;
Koivula and Niemelä 2003) but much more comparative work is needed to
ascertain the advantages of various harvesting techniques with respect to
environmental health. Different forests have different natural rates of distur-
bance (Hunter 1990; Guldin 1996) so the effects of a particular management
technique may depend upon the forest type under consideration. Because few
carabids were negatively affected by gap creation, and none seemed to be
completely eliminated by the disturbance, we feel that group selection cutting
may be particularly well suited to bottomland hardwood forests and deserves
further consideration.
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Koivula M. and Niemelä J. 2003. Gap felling as a forest harvesting method in boreal forests:

responses of carabid beetles (Coleoptera: Carabidae). Ecography 26: 179–187.

Kotze D.J. and Samways M.J. 2001. No general edge effects for invertebrates at Afromontane

forest/grassland ecotones. Biodivers. Conserv. 10: 443–466.

Larochelle A. and Lariviere M.-C. 2003. A Natural History of the Ground Beetles (Coleop-

tera:Carabidae) of America North of Mexico. Pensoft Series Faunistica No. 7. Pensoft Pub-

lishers, 583 pp.

Lenski R.E. 1982a. The impact of forest cutting on the diversity of ground beetles (Coleoptera:

Carabidae) in the southern Appalachians. Ecol. Entomol. 7: 385–390.

Lenski R.E. 1982b. Effects of forest cutting on two Carabus species: evidence for competition for

food. Ecology 63: 1211–1217.

Magura T., Thothmeresz B. and Bordan Z. 1997. Comparison of the carabid communities of a

zonal oak–hornbeam forest and pine plantations. Acta Zool. Acad. Sci. Hungaricae 43: 173–182.

273



Magura T. and Tothmeresz B. 1997. Testing edge effect on carabid assemblages in an oak-horn-

beam forest. Acta Zool. Acad. Sci. Hungaricae 43: 303–312.

Magura T., Tothmeresz B. and Molnar T. 2001. Forest edge and diversity: carabids along forest-

grassland transects. Biodivers. Conserv. 10: 287–300.

Magura T. 2002. Carabids and forest edge: spatial pattern and edge effect. Forest Ecol. Manag.

157: 23–37.

Magura T., Tothmeresz B. and Elek Z. 2003. Diversity and composition of carabids during a

forestry cycle. Biodivers. Conserv. 12: 73–85.

Meadows J.S. and Stanturf J.A. 1997. Silvicultural systems for southern bottomland hardwood

forests. Forest Ecol. Manag. 90: 127–140.

Moore J.-D., Ouimet R., Houle D. and Camire C. 2004. Effects of two silvicultural practices on

ground beetles (Coleoptera: Carabidae) in a northern hardwood forest, Quebec, Canada. Can. J.

Forest Res. 34: 959–968.

New K.C. and Hanula J.L. 1998. Effect of time elapsed after prescribed burning in longleaf pine

stands on potential prey of the Red-Cockaded Woodpecker. Southern J. Appl. Forest. 22(3):

175–183.
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